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Abstract
Split numerical methods have been commonly used
computational physics for many years due to the
speed, simplicity, and the accessibility of shock captu
ing methods in one-dimension. For a variety of reason
it has been challenging to determine just how accura
operator split methods are, especially in the presence
curved wave features. One of these difficulties has be
the lack of multidimensional shock capturing method
Another is the difficulty of mathematical analysis of dis
continuous flow phenomena. Also, computational stu
ies have been limited due to a lack of multidimension
model problems with analytic solutions that probe th
nonlinear features of the flow equations. However,
new genuinely unsplit numerical method has bee
invented. With the advent of the Space-Time Conserv
tion Element/Solution Element (CE/SE) method, it ha
become possible to attain high accuracy in multidime
sional flows, even in the presence of curved shock
Examples presented here provide some new evidence
the errors committed in the use of operator split tec
niques, even those employing “unsplit” corrections. I
these problems, the CE/SE method is able to mainta
the original cylindrical symmetry of the problem and
track the main features of the flow, while the operato
split methods fail to maintain symmetry and position th
shocks incorrectly, particularly near the focal point o
the incoming waves.

Intr oduction
Numerous attempts have been made over the long h
1
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tory of CFD to overcome grid-alignment features of th
techniques for simulating shock and flow phenomen
This multidimensional simulation issue has been re
dered more difficult by the use of one-dimensional spl
ting approaches to solving multidimensional flow
equations such as the Euler equations. In addition
grid-alignment problems in flow simulation, other ser
ous issues in multidimensional flow include accurate
reproducing the curvature of shocks in the flow and mi
imizing reflections of waves exiting the computationa
domain obliquely at an absorbing boundary. In th
paper, the focus will be on the issue of propagatin
curved shocks.

Multidimensional upwind schemes and unsplit adjus
ments to dimensionally split shock capturing method
such as most Godunov-based approaches have had s

success in dealing with grid-alignment issues.6, 7, 9With
some one-dimensional shock-capturing methods, it h
been argued that it is possible to perform fixups to th
transverse component of the flow by estimating the err

incurred with the operator splitting.5, 7 However, they
have only moderate success in accurately represen
curved shocks. Here, we intend to illustrate the magn
tude of this problem, and to visibly demonstrate that
least one unique method does not suffer this deficien
This method is the Space-Time Conservation Eleme

and Solution Element (CE/SE) method due to Chang1

Among its many strengths is that it is genuinely unsp
from the start. It is highly accurate in 2D and 3D, as we
as 1D.

In addition to the CE/SE method there is at least o
other means to obtain genuinely unsplit methods. It

the Riemann Invariant Manifold theory8 which can be
used with a variety of one-dimensional methods. Th
approach will not be considered further here.

Some of the unique aspects of the CE/SE method a
first, it is genuinely unsplit (directionally unsplit); sec
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ond, it conserves space-time flux both locally and glo-
bally; third, neither interpolation nor extrapolation is
required for flux evaluation; and fourth, through the
addition of an adjustable dissipation, the method
becomes robust for strong shocks. Notably, shock cap-
ture is achieved without a characteristic decomposition
or the need to solve a Riemann problem.

In the next section, we sketch the essentials of the CE/
SE method, including the generalization of Chang’s flux

limiter2 to a 2D rectangular grid. Following that, some
details are given of how the CE/SE method is applied to
the two-dimensional Euler equations. Two test problems
representing convergent and divergent 2D shocks are
then described, the results obtained for these problems
with the CE/SE method and two variants of dimension-
ally-split Godunov are compared. Finally, we conclude
by noting where these results will be important.

The CE/SE Method
Chang and his coworkers have shown that the propaga-
tion of signals in hyperbolic conservation laws implies
that it is beneficial to formulate the solution process as a

leapfrog method.1 It is easy to select conservation ele-
ments to allow a leapfrog update. Each conservation ele-
ment (CE) is a region in space-time over which the
integral form of each conservation law is valid. Conser-
vation elements are chosen to fill in the space-time prob-
lem domain. While many choices are possible, we
choose rectangular brick volumes in space-time for the
conservation elements in the simulation code used here.

Next, the solution elements (SE) are selected as the
domains over which values of the dependent variables
are needed in integrals arising from the integral form of
the conservation laws. In these domains a convenient
representation for the dependent variables is selected.
Usually, this is a Taylor series representation that is
expanded about a center point in the solution element.
For instance, in two dimensions on a rectangular grid
that lines up with the coordinate axes, we pick the fol-
lowing representation for a dependent variableg.

(1)

Note that ‘n’ denotes a time level, ‘i’ denotes an index in
thex direction, and ‘j’ an index in they direction. These

indices specify the center point of the solution eleme
that is the domain of validity for equation 1.

As shown in Figure 1, typically two solution element
are involved in the integration of a conservation la
over a CE. The expansion points for the Taylor series
each solution element are denoted by the bullet symb
One of these solution elements involves known quan
ties from the past time level. The other solution eleme
is that for the unknown advanced-time values of th
coefficients in the corresponding Taylor series.

In the Taylor series expansion, is determine

from the partial differential equation forg. The remain-

ing four unknowns, , , , and

are found by solving the four equations obtained b
integrating the conservation law forg over the four indi-
vidual conservation elements surrounding the upda

point . Figure 2 shows the four conservatio

elements that surround a given update point in a unifo
rectangular Cartesian coordinate system. The C
labelled I is the same CE illustrated in Figure 1. Th
sketch also makes it a little clearer how one leapfro
time step works. It also motivates the fact that when th
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Figure 1. A typical conservation element with two
Taylor series expansion points associated with solu-
tion elements that cover the surfaces and volume of
the conservation element.
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integrals for two adjacent CEs are added together, the
contribution on the common face is zero.

Note that no dissipation is involved in obtaining these
coefficients in the Taylor series. Of course, in order to
prevent ringing at shock fronts, dissipation must be
added to the non-dissipative solution. Originally, Chang
used a two parameter dissipation model for damping
this ringing. By treating the CE of dissipation model as
the union of the CEs surrounding an update point

, a method for conservatively modifying the

derivative coefficients was obtained. Recently, Chang
refined this technique with a three parameter dissipation

model.3

The basic idea behind this new dissipation model is to
separately damp weak waves and strong shocks. This is
indicated in equation 2, where is the parameter for

damping weak waves and is the parameter for damp-
ing shocks.

, (2)

where is a central difference approximation to ,

is a nonlinear weighted average of one-sided

approximations to , and

, (3)

is the solution obtained for when solving the

four equations obtained from integrating over the CEs
II, III, and IV in Figure 2.

In order to compute and , it is first necessary t

obtain some advanced-time estimates from the previo
time level data. To accomplish this, the Taylor series
used:

. (4)

 is found from these values as follows:

(5)

Coupling with the known value at the updat

point, , four planes can be constructed, one in ea

of the and directions. For the ith such plane, thex

and y derivatives ofg can be computed. Then, if

and  are the derivatives on the ith plane, define

. (6)

With this quantity, the nonlinear weighted average of

can be defined as:

(7)

with α usually chosen to be 1.0 or 2.0. is compute

analogously. This limiter is the generalization for a rec
angular grid of Chang’s two-dimensional limiter on

regular triangular grid.2

It is also important to note that is computed in a wa

that introduces no directional bias. This generalize
multidimensional limiter preserves the genuinely unsp
nature of the CE/SE method. Thus, unlike techniqu
based upon Godunov or Riemann solvers, there are
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Figure 2. A typical arrangement of conservation
elements surrounding an update point in leapfrog
position. The solution element Taylor series expan-
sion point at the old time level (n-1/2) for CE IV is
not visible.
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fixups or adjustments required to accommodate cou-
pling between different directions.

It is most common to use an artificial viscosity as a way
of adding dissipation to a physical model. Since an arti-
ficial viscosity is added to the physical pressure, it is
therefore the case that linear changes in the artificial vis-
cosity introduce nonlinear changes in the solution. By
contrast, the CE/SE dissipation model introduces
changes in the derivative coefficients that are linear in
the amount of dissipation added. Furthermore, the dissi-
pation is added only after the non-dissipative solution is
computed. Chang found that the addition of this dissipa-
tion breaks the space-time invariance properties that a

non-dissipative CE/SE method possesses.1

The overall result is that the CE/SE model provides bet-
ter control of the dissipation than methods that introduce
dissipation inside of a nonlinear operator. The CE/SE
dissipation model also yields more readily to mathemat-
ical analysis.

Applying CE/SE to the 2D Euler Equations
For the two dimensional Euler equations in Cartesian
coordinates, we solve the equations in internal energy
form. That is, the dependent variables are chosen to be

. We choose to denote thex andy com-

ponents of the momentum by and ; that is,

and respectively. Also, the symbol

P denotes the pressure, and should not be confused with
the momentum components.

We illustrate the application of the CE/SE method to this
situation by examining the conservation law for . The

first step is to write the integral form of the conservation
law for  beginning with equation 8:

(8)

Because of the use of conservation form, the three terms
can be integrated once as shown in expressions 9, 10,
and 11. Note that the term in each equation that is not at

the update point uses old time level data (at ).

(9)

(10)

(11)

Now define the two flux terms in equation 8 as:

(12)

The Taylor series for can be used to evaluate t

integrals in expression 9. In order to obtain comparab
results in the integrals in expressions 10 and 11, o
choice is to linearize the flux terms as in equations 1
and 14.

(13)

(14)

In evaluating and , the time derivatives of th

dependent variables are encountered. Just as

the Taylor series for is replaced by its value from th

differential equation that defines it, each time derivativ

in and is replaced by the corresponding differen

tial equation definition. This process is repeated for th
conservation integrals over CEI, CEII, and CEIV.

Thereby, we obtain four equations to solve for

, , and . Because the grid is

uniform in this case, if the results of integrating over th
four CEs are added together, we obtain an express
that depends only upon , and not any of its deriv

tives. Consequently, the dependent variables can be p
tially updated on this grid without the need for solving

system of equations. When , it is not necessary

solve for the non-dissipative derivative coefficients
However, this is a large amount of dissipation; so, fo
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higher accuracy, it is recommended to solve three of the
equations for the derivative coefficients. When inte-

grating internal energy equation over a CE, nonlinear
terms are found due to the cross derivatives of kinetic
energy terms. Hence, in this case, a nonlinear solver is
required to solve the full system of equations. Happily,
the nonlinearity is weak, so functional iteration works
well given a good starting guess.

It is of interest to compare actual implementations of the
CE/SE method and a Godunov method. Our CE/SE

implementation on rectangular grids with and

is faster per major time step (two leapfrog steps
in a major time step) than the Godunov solver. Also, we
observed that the CE/SE implementation is able to get
reliable solutions at larger time steps than the Godunov
method. These observations have been made in a frame-
work where both the CE/SE method and a Godunov
method are implemented in the same simulation code,
and in a way so that both use exactly the same underly-
ing simulation code services (such as initialization,
memory management, graphics, etc.). Consequently, the
algorithms themselves can be directly compared for
speed, accuracy, code size, etc. Since the CE/SE method
involves solving for the flow variables and their gradi-
ents, it is not obvious how this can be made to be more
efficient than an optimized Godunov solver. This
achievement was made possible through the use of
advanced symbolic computing tools for the bulk of the
coding, very sophisticated optimization, and clever
adjustments to the multidimensional limiters.

When reducing the amount of dissipation used by CE/
SE, a nonlinear solver is required, and the CE/SE
method then slows down to about half the speed of the
Godunov solver. Considering the gains in accuracy,
especially for curved features, this is an easily justified
cost.

Test Problems
We illustrate curved shock issues with converging cylin-
drical shocks. In order to elucidate the problems that
arise due to split versus unsplit methods, we pick model
problems in cylindrical coordinates that depend only
upon the radial coordinate. The simulation is then per-
formed on a uniform two-dimensional rectangular Car-
tesian grid that lies in the (ρ,θ) cylindrical coordinate
plane. The size of the grid is 128 by 128.

In the two problems considered here, the initial condi-
tions include features that do not conform to the geome-
try of the grid. Hence, stairstepping errors or mesh

imprinting occurs due to the initial conditions. Nonethe
less, as will be seen from the CE/SE solutions, the
errors are small.

The first Godunov solver used in these simulations

based upon the Direct Eulerian MUSCL scheme.4 It
employs a standard ADI-type approach for solving th
multidimensional Euler equations; that is, after solving
sequence of Riemann problems in one direction, it pe
forms transverse fixups in the directions normal to th
sweep. In order to remove some bias, the order of dire
tional sweeps is reversed from one-half time step to t
next. This solver will be identified as the MUSCL solve
in the following discussion.

The second Godunov solver employed is the CLAW

PACK package as embedded in AMRCLAW.7 It is a
wave propagation method with an ‘unsplit’ character
the sense that it approximates the terms that are miss
in the operator splitting of the full (nonlinear) Eule
equations.

The CE/SE solver used in the simulations used the f
lowing parameter values for the dissipation mode

and , with in the first prob-

lem and in the second problem. It also spec
fied six digits of accuracy in the nonlinear solver.

All regions in these problems are made up of -la

gases with .

py

ε 1
2
---=

β 1=

ε 0.25= β 0.12= α 1.0=

α 2.0=

γ

γ 5
3
---=

CONTOUR FROM  0.32167E-01 TO  0.73783     CONTOUR INTERVAL OF  0.24333E-01 PT(3Figure 3. Initial conditions for the three region
problem. The inner very low density region has
a low pressure; the low density outer region has
a high pressure; and the high density middle
region has an intermediate pressure.
5
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The first problem is a three region problem where the
inner region is very low density, low pressure, the mid-
dle region is higher density and medium pressure, while
the outer region is low density and high pressure. Each
region is bounded by cylindrical surfaces. The initial
density contours are shown in Figure 3.

Note from the Godunov solutions in Figure 4 that just
before the main shock reaches the lower left corner of

the plot, the MUSCL result is showing subtle hints o
flattening in the solution along the diagonal of the gri
(where x=y, x and y being the two Cartesian coordi-
nates)). In the CLAWPACK solution, the flattening is
very pronounced. A short while after the main shoc
bounce is seen in Figure 5. A significant deterioration
both Godunov solutions near the origin has clear
occurred. In fact, in addition to flattening of the shock
there appears to be jetting occurring on the coordina

CONTOUR FROM  0.32759     TO   5.1578     CONTOUR INTERVAL OF  0

Figure 4. Problem 1 just before a major shock
reaches the origin. The top plot shows the CLAW-
PACK result; the middle plot shows the correspond-
ing MUSCL result; and the bottom plot shows the
CE/SE result using .α 1.0=

CONTOUR FROM  0.12889     TO   1.5061     CONTOUR INTERVAL OF  0.4

Figure 5. Problem 1 after the shocks have
rebounded. The top plot shows the CLAWPACK
result; the middle plot shows the corresponding
MUSCL result; and the bottom plot shows the CE/
SE result using .α 1.0=
6
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axes near the origin. In the CE/SE solution, there is
slight squaring of the contours out a short distance from
the origin. Also, a minor manifestation of the mesh
imprinting of the initial conditions is visible. But over-
all, the CE/SE solution is excellent.

The second problem is a two region problem where the
inner region is a low density, low pressure gas, and the
outer region is a medium density and medium pressure
gas. Once again, the regions are bounded by a cylindri-
cal surface.Contours of this setup are shown in Figure 6.

From Figure 7, just before the main shock reaches the
lower left corner of the plot, slight hints of flattening
appear in the Godunov solutions along the diagonal of
the grid occurs. The effect is not as strong as in the first
problem. However, color contour plots definitely reveal
the effect. For the CE/SE method, mesh imprinting may
have caused one contour to be slightly flattened. In this
case, color contour plots only show a slight asymmetry
in the solution.

A short while after the main shock bounce, the Godunov
solutions in Figure 8 both show significant deterioration
near the origin. In this case, jetting occurs on the coordi-
nate axes near the origin, although not as pronounced as
in the three region problem. As before, the CE/SE solu-
tion appears to be cylindrically symmetric.

These results establish beyond a doubt that the genu-
inely unsplit CE/SE technique is quite powerful. Using a
square Cartesian grid, curved shocks are propagated
almost without distortion across a grid that at no point in

the simulation matches the shape of the shocks. It is a
clear that very serious errors can arise due to the use
dimensional splitting in solvers of nonlinear equation
From our experience, the evidence points to the dime
sional splitting errors becoming visible when the curva
ture of a shock becomes large in a single zone of t
grid.

CONTOUR FROM  0.11500E-01 TO  0.98500E-01 CONTOUR INTERVAL OF  0.30000E-02 PT(3,3)=  0.10000E-01 LABELS SCALED BY   10000.

Figure 6. Initial conditions for the two region
problem. The inner low density region has a
low pressure, and the medium density outer
region has an intermediate pressure.

CONTOUR FROM  0.63436E-01 TO  0.23703     CONTOUR INTERVAL OF  0.61999E-02 PT(3,3)=  0.97427E-01 LABELS SC

Figure 7. Problem 2 just before the main shock
reaches the origin. The top plot shows the CLAW-
PACK result; the middle plot shows the correspond-
ing MUSCL result; and the bottom plot shows the
CE/SE result using .α 2.0=
7
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Conclusions
The ramifications of these results are not limited to the
case when a shock has curvature. Any nonuniform flow,
particularly one developing instabilities or turbulence,
will be more faithfully simulated by a technique like the
CE/SE method. This method’s genuinely unsplit charac-
ter is critical to its accuracy in the tests presented here

and points clearly to its potential in more demandin
flow problems.
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